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ABSTRACT
We present PyTFL, a library written in Python for the team forma-
tion task. In team formation task, the main objective is to form a
team of experts given a set of skills. We demonstrate an efficient
and well-structured open-source toolkit that can easily be imported
into Python. Our toolkit incorporates state-of-the-art approaches
for team formation, e.g., neural-based team formation, and supports
team formation sub-tasks such as collaboration graph preparation,
model training and validation, systematic evaluation based on qual-
itative and quantitative team metrics, and efficient team formation
and prediction. While there are strong research papers on the team
formation problem, PyTFL is the first toolkit to be publicly released
for this purpose.

CCS CONCEPTS
• Information systems → Retrieval models and ranking; Expert
search; • Computing methodologies → Search methodologies.
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1 INTRODUCTION
As the nature of work is becoming increasingly interdisciplinary,
the need to collaboratively work on shared tasks is gaining more
importance. Experts need to effectively engage with others to ad-
dress problems that are not possible to solve or appear in isolation.
This necessitates the formation of expert teams that consists of
members that (1) have synergistic and complementary skill sets,
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and (2) can work together efficiently. The team formation task ad-
dresses this specific challenge and sets out to find teams of experts
that collectively satisfy an input set of desirable skills.

As use cases, the research literature has looked into application
areas where the team formation task can be immediately applied.
For brevity, we include only a few representative application areas
from the literature:

• Freelancing [2, 3, 13]: This employment model allows com-
panies to enter into contractual agreementwith self-employed
labor for short-term projects. Guru1 and Freelancer2 are sam-
ple of freelancing websites. For team formation purposes,
every freelancer can be considered to be an expert who has
a set of skills. Using this analogy, each job posting can be
considered to be a team. The process of finding one or more
freelancers to satisfy a job posting can be viewed as a team
formation process.

• Collaborative Publishing [6, 9–11, 15]: In academic col-
laboration networks, research papers can be considered to
be the output of a successful collaborative research effort.
In this context, academic researchers can be considered as
experts and a jointly published publication can be the result
of the work of a team. The DBLP3 and arXiv4 are example
datasets that have been used for team formation task in the
past.

• Movies [1, 6]: The production of a movie is a highly col-
laborative effort requiring the participation of many people
ranging from actors and directors, among others. In the past,
researchers have viewed the process of putting the team
needed for a movie together as a team formation problem.
The IMDB dataset5 is one of the most popular widely used
datasets in this space.

• Protein-Protein Interactions (PPI) [5, 6]: Understanding
and predicting pairs or groups of protein interactions are
important as they can indicate the formation of macromolec-
ular structures. Some researchers have viewed PPI as a team
formation task where each protein is considered to be an
expert and the genes that each protein carries is its set of
skills. BioGrid PPI Dataset6 is a sample dataset that has been
widely used in the literature.

1https://www.guru.com/
2https://www.freelancer.com/
3https://www.aminer.org/citation
4https://arxiv.org/help/bulk_data
5https://www.imdb.com/interfaces/
6https://downloads.thebiogrid.org/BioGRID
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Based on the above sample representative application areas, we
note that the team formation task is specially challenging for sev-
eral reasons: (1) depending on the application area, the number
of experts and their skill sets can grow very rapidly and hence
the process of matching subsets of experts and skills can become
impractical. For instance, several researchers have shown [7] that
when modeled through a graph structure and as a subgraph iden-
tification problem, the team formation task is NP-hard. As such,
with a relatively large search space, heuristic-based graph methods
are used with often impractical solutions, (2) the large number of
skills and experts leads to a highly sparse network of interactions
between experts and skills. This sparsity of the collaboration net-
work makes the process of mapping between skill and expert spaces
quite difficult for team formation methods that are based on matrix
factorization and neural architectures.

In [10, 11], we found that bayesian neural network based meth-
ods form higher-quality teams compared to state-of-art methods.
In this demo paper, we introduce PyTFL7, which is an open-source
Python toolkit that provides an easy-to-use and effective neural-
based method for the team formation task. This software toolkit
addresses the issues associated with the large size of the skill and
expert spaces by allowing the users to automatically learn embed-
ding representations for skills and experts, which are then used for
mapping between the two spaces. PyTFL also addresses the sparsity
problem by offering a variational Bayes neural architecture that is
resilient against overfitting for sparse networks.

The demonstration will include:
• Showcasing the extensible architecture offered by PyTFL that
comes with off the shelf neural methods for team formation
and can also be easily extended to include new methods;

• Presenting how the PyTFL: toolkit can be easily installed
from PyPI with a single installation command and then seam-
lessly integrated into any Python program;

• Displaying that PyTFL supports for many subtasks involved
with team formation such as collaboration graph preparation,
model training, team formation (inference) and evaluation
of formed teams, just to name a few.

Wewill specifically show the audience of this demonstration how
they can effectively use or extend PyTFL for the following sub-tasks
in team formation: Collaboration Network Preparation: Users
can import their custom datasets to the library and transform it into
the standard defined format in the form of a heterogeneous graph
structure. PyTFL can support various input data presentations such
as CSV. The standard format stores the embedding vectors of skill,
expert sets and along with the unique IDs for each record; Train-
ing Team Formation Models Once the collaboration network is
loaded, PyTFL allows to train a team formation model. The modular
implementation makes it also possible for users to modify the train-
ing and create variations of it. In addition, the users can switch out
and replace the training procedure used to build a team formation
model without hurting the other parts of the pipeline; Team Infer-
ence (generation) PyTFL can infer new teams based on a trained
team formation model given an input set of skills. The users can
predict teams after the training process either in a pipeline or in

7https://pypi.org/project/pytfl/

parallel. A user can save a snapshot of model at anytime and serial-
ize it for later use; Evaluation The toolkit also allows the users to
systematically evaluate the team formation models using various
types of quantitative and qualitative metrics. These include, but are
not limited to Mean Average Precision (MAP), Recall, Normalized
Discounted Cumulative Gain (NDCG), and Mean Reciprocal Rank
(MRR), to name a few; Benchmarking In order to compare differ-
ent models with each other, PyTFL provides functionalities to help
users compare two team formation models with each other with
significant depth. For instance, it allows for finding the correlation
between correct candidate teams and the expected teams, and by
plotting metric trends based on the input test datasets.

2 RELATEDWORK
From a high-level perspective, work in the area of team formation
can be broadly categorized into three classes, namely graph-based,
neural-based and recommendation-based methods.

On of the earliest approaches for team formation was first intro-
duced in Lappas et al. [9] where the authors proposed optimization
functions to measure the communication cost of a team. They used
the DBLP dataset for evaluation. Moreover, by adding more objec-
tives to the problem a new set of solutions were later introduced
in [5, 6, 9]. The downside of these approaches is that they are all
heuristic-based methods that attempt to reduce the time complex-
ity of graph-based search through some optimization mechanisms.
From an implementation point of view, the code for these methods
are not publicly available; however, we have been able to receive
Java-based implementation of these methods directly from the au-
thors. The implementations are primarily proof-of-concept and lack
documentation.

More recent approaches to team formation focus on neural ar-
chitectures. These methods rely on a neural network to learn a
mapping from the skills space to the experts spaces. In our own
prior works [10, 11], we hypothesised that a neural network can
be trained using past collaboration between experts such that it
satisfies two main criteria: (1) maximal coverage for a given set of
skills, and (2) maximal collaboration history among team members.
Similarly, Sapienza et. al. [12], have used an autoencoder architec-
ture to create a mapping between skill and expert domains. Their
neural network learns the mapping using the adjacency matrix
that represents the expert directed networks. While these neural
methods do have Github repositories8, they are designed to serve
as proof of concept and not for practical use by experts.

The third group of methods consider team formation as a task
that can be modeled through a recommendation process. For in-
stance, the recurrent recommender network (rrn) [14] that employs
an LSTM-based autoregressive model has been used to learn the
mapping between skills and experts. Other methods such as svd++
method [8] have also been used for this task in the past. The effi-
cient implementation for these methods are widely available and
are quite stable; however, these are generic recommender system
implementations and are not specifically built and delivered for
the team formation task. Therefore users need to customize these
tools before they can be used for team formation. Furthermore,

8https://github.com/radinhamidi/Retrieving-Skill-Based-Teams-from-
Collaboration-Networks
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Figure 1: An Overview of the PyTFL Stages.

these methods have shown much weaker performance compared
to neural methods on the team formation task [10, 11] as such they
are not ideal choices for this task.

To the best of our knowledge, this is the first library dedicated
to the team formation task that provides its users with (1) access to
a well-maintained state-of-the-art implementation; and (2) easy to
use programmatic interface for model training and team generation;
and (3) the effective benchmark of the outcomes using different
methods.

3 PIPELINE
We visually depict the pipeline of the PyTFL package in Figure 1. As
shown in this figure, the pipeline consists of four major stages, in-
cluding collaboration network preparation, model training, predic-
tion and evaluation stages. In the following, we briefly demonstrate
relevant code snippets related to each stage of the pipeline.

The PyTFL package is available on PyPI and can be easily im-
ported in Python upon installation (e.g., through pip). Upon im-
porting the TeamFormationSession from TFL, it is possible to create
an instance of the team formation task session, which requires the
specification of the task name, the path where models are loaded
and saved, as well as path to the dataset pickle. In the collabora-
tion network preparation stage, PyTFL allows the user to easily
learn neural embedding representations for skills and experts and
generate representations for teams. The process of learning rep-
resentations for experts, skills and teams is simplified into two
commands. As is the case for every stage of PyTFL, the user can
opt to serialize and store the products of this stage and load them
as necessary in the future.

The data preparation stage includes a dataset format transition.
PyTFL uses a unified data format through its training, testing and
prediction procedures. Therefore, any dataset given by the users

needs to be converted to this format. The transform process is
illustrated in Figure 2. Considering the variety in nature of the team
formation task dataset, information can be in formats of objects, raw
text, semi-structured entries. This information must be transformed
so that each record can be represented as: (1) one occurrence vector
for experts, (2) one occurrence vector of skills and (3) a unique
identifier attached to them for further reference.

For the model training stage, we adapt a similar strategy as
sklearn and provide a method to systematically create test and train
datasets. This is not a straightforward task in team formation, as it is
important to make sure that skills and experts are distributed across
the test and train without leakage. Leakage can happen when ex-
perts who have collaborated in multiple past projects are listed
across test and train sets. Our TFL.train_test_split_data()
function ensures that such cases are taken care off effectively. Based
on the dataset splits, PyTFL provides the means to train a variational
model to map between the skill and expert spaces. The benefit of a
variational Bayes neural architecture is that it is robust to overfit-
ting and resilient to sparse collaboration networks [4]. The added
benefit of PyTFL is that it provides a clear interface for adding new
training modules by the users beyond the built-in variational Bayes
neural architecture. Any newmethods can be incorporated with the
data encoded through the collaboration network preparation stage
and models generated based on the expected outputs of the model
training stage. This way users can seamlessly add new methods
and easily benchmark them.

We also note that PyTFL is quite efficient in terms of generating
new teams given a set of desirable input skills. In our earlier works
[10, 11], we have benchmarked various team formation methods
in terms of their efficiency. We have empirically shown that for
different skill and team sizes, the variational Bayes neural architec-
ture is among the most efficient (in terms of team inference time)
compared to existing team formation techniques; therefore, the
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Figure 2: Illustration of our data format preparation.

Figure 3: Code snippet for Evaluation visualization of a
Team Formation model.

offered team generation (prediction) implementation is fast to be
used in practice. In addition to generating teams, in the demo users
can also easily benchmark the produced teams through both quali-
tative and quantitative metrics, which can be exported as reports
or visualized as charts. A sample visualization generated by PyTFL
on quantitative metrics are shown in Figure 3.

For complete illustration of the programming involved to pro-
duce a functional PyTFL implementation and to show how conve-
nient it is to use PyTFL, we have included all of the code required
to perform the whole process of data loading to model training to
team prediction and evaluation in Figure 4. The simplicity of the
code relieves the user from the many details involved in training
and testing a team formation task.

4 CONCLUSIONS
In this demonstration paper, we showcase the first open-source
Python-based toolkit for the task of team formation. The team

Figure 4: Sample Code Snippet for PyTFL illustrating sim-
plicity of our library.

formation task can find extensive applications ranging from as-
sembling teams for freelancing opportunities to predicting protein-
protein interactions. The toolkit is accessible through PyPI and has
been designed with extensibility and ease of use in mind. During
the demo, we will show the process involve with (1) formatting and
loading past collaboration networks in PyTFL, (2) the light-weight
training of neural architectures for the sake of team formation, (3)
generating teams given input set of skills, as well as evaluating and
generating reports on the utility of the generated teams.
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